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DUAL QUATERNION CLOSED FORM EQUATIONS

OF SPATIAL 7R LOOPS

F.H. MAMMADOV1

Abstract. By using the double quaternions, 16 finite-form algebraic equations are derived

that express the conditions for the closure of the 7R mechanism. It was possible to significantly

simplify these equations by introducing intermediate angles. The unknowns are sines and cosines

of intermediate angles, which are linear combinations of output angles of rotation in kinematic

pairs. The first six equations of the 16 are linear with respect to the unknowns, the following

8 equations express the equality to unity of the sum of squares of sines and cosines, and the

remaining 2 equations express additional connections between the unknowns. Numerical results

are obtained.
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1. Introduction

It is well-known that the displacement analysis of the general 7R mechanism is the most

difficult task in the analysis of single-loop spatial mechanism. It is “The Mount Everest of

Kinematic Problems” - Freudenstein [10]. The main difficulty in solving this problem lies, firstly,

in obtaining algebraic equations, connecting variable angles in rotational kinematic pairs, and

secondly in solving these equations. Therefore, the successful solution of the problem mainly

depends on the complexity of the equations obtained. In order to get the closed form analysis

of this problem, many mathematical methods have been used, such as recursive notation [20],

matrices with real-number elements [5]. The work of a number of researchers is devoted to the

study of spatial mechanisms using quaternion algebra, dual numbers and screw theory. In the

works of F.H. Mammadov [17, 16], dual quaternions are used to compile closed-loop equations.

By introducing intermediate unknown angles, the author will greatly simplify these equations.

Using the principle of transferring Kotelnikov, the problem of speeds and accelerations of spatial

mechanisms is also solved. In the work of F.M. Dimentberg [6], the theory of screws, the

algebra of dual numbers, the kinematic analysis of spatial mechanisms based on screw calculus

are described, various groups of screws are described. V.N. Branets and I.P. Shmyglevsky [1]

describe in detail the algebra of quaternions, their properties, and the possibility of using as

a unified operator of spatial orientation of a solid body. The authors conducted an extensive

study of the kinematics of a solid in quaternion representation. In [12] D. Gan et al. describe

the algebra of the dual quaternion and its use in the mechanisms of sequential structure. The

solution of the problem of displacement of a single-circuit spatial 7R mechanism is considered.

To solve closed-loop equations, Dixon resultant is used. The results of the numerical example

are given, including four real assemblies of the 7R mechanism identified. In [8] J. Duffy and S.
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Derby, a 24th degree equation was obtained between the input and output angles for a spatial 7R

mechanism with successively perpendicularly intersecting axes. Solving the problem of moving

this mechanism is essentially an important step towards solving the 7R mechanism of the most

general form with rotational kinematic pairs arbitrarily oriented in space.

In [7], J. Duffy and C. Crane expressed the relationship between the input and output angles of

the spatial 7R mechanism with the axes of rotational kinematic pairs arbitrarily located in space,

in the form of the zero determinant 16× 16, whose elements are expressed by the tangents of half

angles of rotation in rotational kinematic pairs. An algorithm has been developed for calculating

the values of angular displacements in the remaining rotational pairs of the mechanism. The

results are confirmed by numerical examples. J. Duffy in his article [9] obtained the eighth degree

equations between the input and output displacement for the spatial seven link mechanisms

RPPRRRR, RRRPPRR, RPRRRPR, RPRRPRR and RPRPRRR. The results are confirmed

by numerical examples. Solving the problem of moving these mechanisms is a significant advance

in the kinematic analysis of spatial mechanisms. In addition, the article discusses the definition of

the displacements of the spatial seven-link 4R-3P, 5-link 3R-2C and 6-link 4R-PC mechanisms.

Chen Wei-rong in article [3] derived the equation of the relationship between the input and

output displacements of the spatial 7R mechanism. To do this, he uses the rotation matrices

as the operator of spatial orientation of solids; he obtains the scalar products of the direction

cosines of the unit vectors of the Cartesian coordinate system and derives 6 equations of the

closure condition. George N. Sandor et al. in article [20] present conditions for excluding cases

of branching during the synthesis of the spatial 7R mechanism. These conditions are based on

the theory of Hunt on linear-dependent screws and the theory of the existence of a stationary

configuration. The paper presents a numerical example of the synthesis of the 7R mechanism

with the exception of the cases of branching. Hong YouLee and Chong Gao Liang [13] obtained

a 16th degree equation expressing the relationship between the tangents of the half angles of

rotation of the input and output link of the 7R spatial mechanism. The input-output equation is

obtained from the condition that the 8× 8 determinant is zero, and the relationship between the

other angles is expressed by the equation in an implicit form. The authors conducted a detailed

analysis based on vector analysis and the algebra of dual numbers, developed by J. Duffy. The

results are confirmed by numerical examples. Martin Pfurner et al. in [19] analyzes a seven-

link single-loop mechanism with one degree of freedom of a variable structure by combining

two four-link spatial mechanisms with redundant coupling with rotational and translational

pairs, namely the Bennett mechanism with a spatial RPRP mechanism with excess coupling.

Both initial mechanisms are connected in such a way that one parameter of movement and two

points of initial mechanisms coincide. Subsequently, all unnecessary links are removed, and the

remaining seven links, joined at these points, are inserted to create a single-loop mechanism.

The mechanisms of 7R, 5R2P, and 4R3P are created in this way. The kinematic analysis of the

7 -link mechanisms of the variable structure of all classes is considered in detail. Alfredo Valverde

and Panagiotis Tsiotras [21] describe double quaternions, the basic mathematical operations on

them, the kinematic study of robotic devices using double quaternions, as well as the elimination

of various motion restrictions arising in the course of spacecraft flight. In [11] Jaime Gallardo-

Alvarado et al. the displacement analysis of the spherical parallel manipulator is simplified

by formulating closure equations based on two unit vectors representing the orientation of the

moving platform and solved the problems of displacement. After, the input-output equation for

speed is obtained using the theory of screws. Chelnokov [2], on the basis of the Kotelnikov-Study

principle of transfer, presented the spatial motion of a rigid body, which is a combination of

translational and rotational motions in one helical motion. Possible applications in the theory
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of spatial mechanisms and mechanics of robotic manipulators, as well as in inertial navigation

problems for determining the orientation and speed of a moving object are indicated. In [14], Jing

Li combined a quaternion-based rotation vector and a double quaternion-based screw vector.

First, the rotation vector method is used to update the attitude quaternion of the leader rigid

body relative to the inertial coordinate system. Then, the screw vector algorithm is used to

update the dual quaternion of the follower rigid body relative to the inertial coordinate system.

Finally, the relative position and relative attitude updating algorithms of the leader-follower

rigid body are established based on the dual quaternion.

Neil T. Dantam in paper [4] has presented a new derivation of the dual quaternion in exponen-

tial and logarithmic form, eliminating the singularity. It is shown that the implicit representation

of dual quaternions provides analytical and numerical advantages over matrices and ordinary

dual quaternions, and they are more compact and require fewer arithmetic operations. In the

article [15] Ping Feng Lin et al. introduced a new approach to analytical solution of the inverse

problem of kinematics. The author claims that within the framework of the theory of screws, this

process is mathematically performed much more efficiently and has a geometric meaning. Both

the results obtained and the simulation results are compared with the general the numerical so-

lutions used and analytical solutions based on matrices show that the proposed method is faster

and is not subject to numerical instability caused by the proximity to a singular configuration.

P.S. Pankov et al. in [18] show that many results on the asymptotic behavior of solutions of

dynamical systems can be uniformly formulated using the new concepts of ”asymptotic equiva-

lence” and ”asymptotic reduction of the dimension of the space of solutions”. The new method

of space splitting makes it possible to extend the phenomenon of singular solutions to large

classes of operator-difference equations and to obtain new results for differential equations with

delay.

In this paper, as the operator of the most general spatial transformation, it is proposed to

use dual quaternions, which are used to compose the closed-loop equations of closure of the

7R spatial mechanism of the most general form, and lay down the conditions for simplifying

these equations. The obtained equations are applied to the numerical solution of the problem

of displacements of the 7R mechanism.

2. A brief note on quaternions, the operation of turning and dual numbers

A quaternion is a complex number composed of a real unit 1 and three imaginary units ī1,

ī2, ī3 with real elements:

λ = 1λ0 +
3∑

k=1

λk īk. (1)

The rules for multiplying units are as follows:

1 ◦ ī1 = ī1 ◦ 1 = ī1, 1 ◦ ī2 = ī2 ◦ 1 = ī2, 1 ◦ ī3 = ī3 ◦ 1 = ī3, 1 ◦ 1 = 1,

ī1 ◦ ī1 = −1, ī2 ◦ ī2 = −1, ī3 ◦ ī3 = −1,

ī1 ◦ ī2 = −ī2 ◦ ī1 = ī3, ī3 ◦ ī1 = −ī1 ◦ ī3 = ī2, ī2 ◦ ī3 = −ī3 ◦ ī2 = ī1.

The rules for multiplying imaginary units are remembered using the following principle: when

multiplying two units located along the arrow, the third unit with the sign “+” is obtained; when

moving in the opposite direction; the unit is obtained with the sign “-”. Results multiplication

of real and imaginary units were shown in Table 1. These rules indicate that multiplication by 1
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does not change the quaternion; therefore in the future the first term λ0 will be denoted without

unity in the quaternion expression.

Table 1. Units’ multiplication.

1 ī1 ī2 ī3

1 1 ī1 ī2 ī3

ī1 ī1 -1 ī3 −ī2

ī2 ī2 −ī3 - 1 ī1

ī3 ī3 ī2 −ī1 -1

Figure 1. The rules for multiplying imaginary units.

The units ī1, ī2, ī3 can be identified with the units of the three-dimensional space and consider

the coefficients at these units as components of the vector. Accordingly, the quaternion can be

represented as a sum of scalar and vector parts:

λ=1λ0 + λ1̄i1 + λ2̄i2 + λ3̄i3 = sqalλ+ vectλ,

where sqalλ=λ0, vectλ = λ1̄i1 + λ2̄i2 + λ3̄i3.

A conjugate is called a quaternion, in which the vector part has the opposite sign:

λ̃=sqalλ− vectλ = λ0 − λ1̄i1 − λ2̄i2 − λ3̄i3.

Multiplication of quaternions has associative and distributive properties:

(λ1λ2)λ3 = λ1(λ2λ3), λ1(λ2 + λ3) = λ1λ2 + λ1λ3.

But the multiplication of quaternions is not commutative. Indeed, after performing quaternion

multiplication of two quaternions λ and µ, we obtain:

λ ◦ µ = λ0µ0 − λ1µ1 − λ2µ2 − λ3µ3 + λ0
(
µ1̄i1 + µ2̄i2 + µ3̄i3

)
+

+µ0
(
λ1̄i1 + λ2̄i2 + λ3̄i3

)
+

∣∣∣∣∣∣
ī1 ī2 ī3
λ1 λ2 λ3
µ1 µ2 µ3

∣∣∣∣∣∣ (2)

It follows from the expression obtained that λ ◦ µ = µ ◦ λ only when the determinant

disappears. The latter is possible either when λ1 = λ2 = λ3 = 0, or µ1 = µ2 = µ3 = 0, that

is, when one of the factors is a scalar, or when λ = aµ (a is a real number). From the last

expression, we also conclude that the quaternion multiplication of two vectors contains the scalar

and vector products of these vectors. Indeed, if we take in the formula (2) λ0 = µ0 = 0, then

we get:

λ ◦ µ = −λ1µ1 − λ2µ2 − λ3µ3 +

∣∣∣∣∣∣
ī1 ī2 ī3
λ1 λ2 λ3
µ1 µ2 µ3

∣∣∣∣∣∣ .
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The norm of a quaternion is the product of λ by the conjugate quaternion λ̃:

λ = λ ◦ λ̃ = λ̃ ◦ λ = λ20 + λ21 + λ22 + λ23.

This expression is obtained on the basis of expression (2). The quaternion norm is denoted

by |λ| or λ. If |λ| = 1, the quaternion is called unit quaternion. In the future, we will use only

unit quaternions.

Any quaternion (1) can be represented in a trigonometric form:

λ = λ(cosφ+ e sinφ).

Where λ is the quaternion norm, e is the unit vector of the vector part of the quaternion λ:

e =
vectλ√

λ21 + λ22 + λ23
=
λ1̄i1 + λ2̄i2 + λ3̄i3√

λ21 + λ22 + λ23
, (3)

cosφ =
λ0

λ20 + λ21 + λ22 + λ23
, sinφ =

√
λ21 + λ22 + λ23

λ20 + λ21 + λ22 + λ23
. (4)

Accordingly, the trigonometric expression for the unit quaternion will have the following form:

λ = cosφ+ e sinφ. (5)

The quaternion algebra allows us to represent the spatial transformation in a simple form,

the essence of which is as follows. Let λ and r are non-scalar quaternions, then the quaternion

multiplication

r′ = λ ◦ r ◦ λ̃. (6)

There is also a quaternion, whose norm and scalar part are equal to the norm and the scalar

part of the quaternion r. The vector part of r′ vect r′ is obtained by rotating vectr along the

cone about the e axis by a double angle 2φ. Operation (6) only changes the vector part of the

quaternion, so this operation can be considered as an operation of transforming the vector r

into a vector r′:

r′0 = r0

r′1 =
2
(
λ20 + λ21 − λ22 − λ23

)
λ2

r1 +
2 (λ1λ2 − λ0λ3)

λ2
r2 +

2 (λ1λ3 + λ0λ2)

λ2
r3,

r′2 =
2 (λ1λ2 + λ0λ3)

λ2
r1 +

λ20 + λ22 − λ21 − λ23)

λ2
r2 +

2 (λ2λ3 − λ0λ1)

λ2
r3,

r′3 =
2 (λ1λ3 − λ0λ2)

λ2
r1 +

2 (λ2λ3 + λ0λ1)

λ2
r2 +

λ20 + λ23 − λ21 − λ22)

λ2
r3.

(7)

If quaternion λ, which specifies the transformation (6) is unit, then expression (7) takes the

following more simpler form:

r′1 =
(
λ20 + λ21 − λ22 − λ23

)
r1 + 2 (λ1λ2 − λ0λ3) r2 + 2 (λ1λ3 + λ0λ2) r3,

r′2 = 2 (λ1λ2 + λ0λ3) r1 + (λ20 + λ22 − λ21 − λ23)r2 + 2 (λ2λ3 − λ0λ1) r3,

r′3 = 2 (λ1λ3 − λ0λ2) r1 + 2 (λ2λ3 + λ0λ1) r2 + (λ20 + λ23 − λ21 − λ22)r3.

(8)

Suppose further that the vector r is subjected to successive transformations-rotations given

by the quaternions λ1,λ2, . . . ,λn, respectively. The resulting rotation is determined by the

quaternion λ:

λ = λn ◦ λn−1 ◦ · · · ◦ λ1, (9)

where the quaternions λ1,λ2, · · · ,λn are expressed in the original coordinate system. Of course,

with the increase in the number of successive transformations, the use of the latter expression

becomes time-consuming. But if we use the Rodrigues-Hamilton parameters as the quaternions
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of sequential rotations, then the resulting quaternion is determined by the following expression

[1]:

λ = λ1 ◦ λ2 ◦ · · · ◦ λn. (10)

The components of the quaternion in a basis that is transformed by the same quaternion are

called the Rodrigues-Hamilton parameters. This quaternion has equal components in both

coordinate systems due to the fact that it is quaternion that determines by transformation from

one coordinate system to another.

The dual number has the following form:

A = a+ δa0,

where a is the main part of the dual number, a0 is the moment part of the dual number, δ is

the Clifford operator with the property δ2 = 0. The dual numbers are denoted by large letters.

The basic operations on the dual numbers are carried out according to the formulas:

A±B = (a± b) + δ
(
a0 ± b0

)
,

AB = ab+ δ
(
a0b+ ab0

)
,

A

B
=
a

b
+ δ

a0b+ ab0

b2
, (b ̸= 0) .

The dual function has the following form:

F (X) = f
(
x+ δx0

)
= f (x) + δx0f ′(x)

F (X, A1, A2, . . . , An) =

F (x, a1, a2, · · · , an) + δ

(
x0
dF

dx
+ a01

dF

da1
+ a02

dF

da2
+ · · ·+ a0n

dF

dan

)
.

The trigonometric functions of the dual number X = x+ δx0 are expressed as follows:

sinX = sinx+ δx0 cosx, cosX = cosx− δx0 sinx, tanX = tanx+ δx0
1

cos2x
.

If in the expression (1) the real numbers λo, λ1, λ2, λ3 are replaced by the dual ones, we obtain

the expression for the dual quaternion:

Λ = Λo + Λ1̄i1 + Λ2̄i2 + Λ3̄i3, (11)

where Λ = λ+δλ0, (k = 0, 1, 2, 3) components of the dual quaternion. We transform expression

(11):

Λ = Λ0 + Λ1̄i1 + Λ2̄i2 + Λ3̄i3 =

=
(
λ0 + δλ00

)
+
(
λ1 + δλ01

)
ī1 +

(
λ2 + δλ02

)
ī2 + (λ3 + δλ03)̄i3 =

= λ0 + λ1̄i1 + λ2̄i2 + λ3̄i3+ = δ
(
λ00 + λ01 ī1 + λ02 ī2 + λ03 ī3

)
= λ+ δλ0.

(12)

Equation (12) is sometimes called a biquaternion. It should be noted that the designation

“biquaternion” and “dual quaternion” are very relative, since they are equivalent and mean the

same operator of the most general spatial transformation. Like the quaternion expression (5),

the unit dual quaternion can be reduced to a trigonometric form:

Λ = cosΦ +E sinΦ.

Where E is the single screw of the screw part of the dual quaternion; is the dual argument

(dual angle) of the dual quaternion E. Based on the Kotelnikov-Study principle of transfer, all
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formulas written for quaternions are unexpanded formulas for dual quaternions. For example,

applying this principle to the rotation operation (6), we can write

R′ = Λ ◦R ◦ Λ̃

the essence of which is expressed in the following - the screw R′ is obtained by moving the screw

R along the unit screw E to the dual angle 2Φ.

3. The construction of closed-loop equations for spatial mechanisms

It is well known that the compilation of the equations for the closure of spatial mechanisms

is a laborious task. The derivation of the equations of interrelation between the parameters of

the mechanism by performing multiplication operations in the closure equations is an almost

impossible task. Traditional operators for spatial transformation by using matrix approach for

complex spatial mechanisms gives the difficult nonlinear equations. The closed-loop equations

for the spatial 7- link mechanism (Fig.1) are expressed by the dual quaternion product:

Λ1 ◦A1 ◦Λ2 ◦A2 ◦ · · · ◦Λ7 ◦A7 = 1, (13)

where Λk = cosΦk + ī3 sinΦk (k = 1, 2, . . . , 7) the dual quaternions characterizing the dis-

placements in kinematic pairs can be called “variables”:Φk = φk + δφ0
k, and these angles (see

Fig.1) are equal to half the angles Φ′
K : Ψk = 1

2 Φ′
K = 1

2(φ
′
k+δφ

′0
k ); Ak = cosBk+ ī2 sinBk, dual

quaternions characterizing the dimensions of the links of the mechanism can be called “constant”:

Bk = βk+δ
0
k, these angles are also equal to half the anglesB

′
k: Bk = 1

2B
′
k = 1

2(β
′
k+δβ

0′
k ), k = 1÷7

(shown in Fig.1 only for the 1st link).

It was shown in [3] that equation (13) is the starting point for all single-loop mechanisms (in-

cluding plane four-link mechanisms), where conditions for simplifying the closed-loop equations

are also given.

Figure 2. Spatial 7R mechanism.
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4. Simplification of dual quaternion multiplication

To simplify the dual quaternion multiplication (13), the dual quaternion multipliers should

be distributed on both sides of the equation:

Λ1 ◦A1 ◦Λ2 ◦A2 ◦Λ3 ◦A3 ◦Λ4 = Ã7 ◦ Λ̃7 ◦ Ã6 ◦ Λ̃6 ◦ Ã5 ◦ Λ̃5 ◦ Ã4, (14)

where Ã7, Λ̃7, Ã6, Λ̃6, Ã5, Λ̃5, Ã4 conjugate dual quaternions. Express dual quaternions in

trigonometric form:

(cosΦ1 + ī3 sinΦ1) ◦ (cosB1 + ī2 sinB1) ◦ · · · ◦ (cosB3 + ī2 sinB3) ◦ (cosΦ4 + ī3 sinΦ4) =

· · · ◦ (cosB7 + ī2 sinB7) ◦ (cosΦ7 + ī3 sinΦ7) ◦ · · · ◦ (cosΦ4 + ī3 sinΦ4) ◦ (cosB4 + ī2 sinB4).

By doing the multiplication left and right sides of this dual quaternion expression, and group-

ing the terms with units 1, i1, i2, i3 we obtain four dual equations. There is one dual relationship

between the four equations for the norm of the dual quaternion. Thus, in the four dual equa-

tions, only three are independent. Therefore, rejecting one of the four equations, we obtain the

following three independent dual equations (for compactness, the sine and cosine are denoted

by S and C):

CΦ1CB1CB2CB3C (Φ2 +Φ3 +Φ4)− SΦ1CB1CB2CB3S (Φ2 +Φ3 +Φ4)−
−CΦ1CB1SB2SB3C (Φ2 − Φ3 +Φ4) + SΦ1CB1SB2SB3S (Φ2 − Φ3 +Φ4)−
−CΦ1SB1CB2SB3C (Φ2 +Φ3 − Φ4)− SΦ1SB1CB2SB3S (Φ2 +Φ3 − Φ4)−
−CΦ1SB1SB2CB3C (Φ2 − Φ3 − Φ4)− SΦ1SB1SB2CB3S (Φ2 +Φ3 − Φ4)+

+[SB7CB6CB5SB4 − CB7CB6CB5CB4]C (Φ5 +Φ6 +Φ7)+

+[CB7SB6SB5CB4 − SB7SB6SB5SB4]C (Φ5 − Φ6 +Φ7)+

+[CB7SB6CB5SB4 + SB7SB6CB5CB4]C (Φ5 +Φ6 − Φ7)+

+[SB7CB6SB5CB4 + CB7CB6SB5SB4]C (Φ5 − Φ6 − Φ7) = 0,

SΦ1SB1CB2CB3C (Φ2 +Φ3 +Φ4)− CΦ1SB1CB2CB3S (Φ2 +Φ3 +Φ4)−
−SΦ1SB1SB2SB3C (Φ2 − Φ3 +Φ4) + CΦ1SB1SB2SB3S (Φ2 − Φ3 +Φ4)+

+SΦ1CB1CB2SB3C (Φ2 +Φ3 − Φ4) + CΦ1CB1CB2SB3S (Φ2 +Φ3 − Φ4)+

−SΦ1CB1SB2CB3C (Φ2 − Φ3 − Φ4) + CΦ1CB1SB2CB3S (Φ2 − Φ3 − Φ4)+

+[SB7CB6CB5CB4 − CB7CB6CB5SB4]S (Φ5 +Φ6 +Φ7)+

+[CB7SB6SB5SB4 − SB7SB6SB5CB4]S (Φ5 − Φ6 +Φ7)+

+[CB7SB6CB5CB4 − SB7SB6CB5SB4]S (Φ5 +Φ6 − Φ7)+

+[CB7CB6SB5CB4 + SB7CB6SB5SB4]S (Φ5 − Φ6 − Φ7) = 0,

CΦ1SB1CB2CB3C (Φ2 +Φ3 +Φ4) + SΦ1SB1CB2CB3S (Φ2 +Φ3 +Φ4)−
−CΦ1SB1SB2SB3C (Φ2 − Φ3 +Φ4)− SΦ1SB1SB2SB3S (Φ2 − Φ3 +Φ4)+

+CΦ1CB1CB2SB3C (Φ2 +Φ3 − Φ4)− SΦ1CB1CB2SB3S (Φ2 +Φ3 − Φ4)+

+CΦ1CB1SB2CB3C (Φ2 − Φ3 − Φ4)− SΦ1CB1SB2CB3S (Φ2 − Φ3 − Φ4)+

+[−SB7CB6CB5CB4 − CB7CB6CB5SB4]C (Φ5 +Φ6 +Φ7)+

+[ SB7SB6SB5CB4 + CB7SB6SB5SB4]C (Φ5 − Φ6 +Φ7)+

+[ SB7SB6CB5SB4 − CB7SB6CB5CB4]C (Φ5 +Φ6 − Φ7)+

+[ SB7CB6SB5SB4 − CB7CB6SB5CB4]C (Φ5 − Φ6 − Φ7) = 0.

(15)
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We introduce intermediate angles:

Ψ1 = Φ2 +Φ3 + Φ4; Ψ2 = Φ2 − Φ3 + Φ4; Ψ3 = Φ2 +Φ3 − Φ4; Ψ4 = Φ2 − Φ3 − Φ4,

Ψ5 = Φ5 +Φ6 +Φ7; Ψ6 = Φ5 − Φ6 +Φ7; Ψ7 = Φ5 +Φ6 − Φ7; Ψ8 = Φ5 − Φ6 − Φ7.
(16)

We introduce the following notation:

C1,1 = CΦ1CB1CB2CB3; C1,2 = −SΦ1CB1CB2CB3;

C1,3 = −CΦ1CB1SB2SB3; C1,4 = SΦ1CB1SB2SB3;

C1,5 = −CΦ1SB1CB2SB3; C1,6 = −SΦ1SB1CB2SB3;

C1,7 = −CΦ1SB1SB2CB3; C1,8 = −SΦ1SB1SB2CB3;

C1,9 = SB7CB6CB5SB4 − CB7CB6CB5CB4; C1,10 = 0;

C1,11 = CB7SB6SB5CB4 − SB7SB6SB5SB4; C1,12 = 0;

C1,13 = CB7SB6CB5SB4 + SB7SB6CB5CB4; C1,14 = 0;

C1,15 = SB7CB6SB5CB4 + CB7CB6SB5SB4; C1,14 = 0;

C2,1 = SΦ1SB1CB2CB3; C2,2 = −CΦ1SB1CB2CB3;

C2,3 = −SΦ1SB1SB2SB3; C2,4 = CΦ1SB1SB2SB3;

C2,5 = SΦ1CB1CB2SB3; C2,6 = CΦ1CB1CB2SB3;

C2,7 = −SΦ1CB1SB2CB3; C2,8 = CΦ1CB1SB2CB3;

C2,8 = 0; 2,10 = SB7CB6CB5CB4 − CB7CB6CB5SB4;

C2,11 = 0; 2,12 = CB7SB6SB5SB4 − SB7SB6SB5CB4;

C2,13 = 0; 2,14 = CB7SB6CB5CB4 − SB7SB6CB5SB4;

C2,15 = 0; 2,16 = CB7CB6SB5CB4 + SB7CB6SB5SB4;

C3,1 = CΦ1SB1CB2CB3; C3,2 = SΦ1SB1CB2CB3;

C3,3 = −CΦ1SB1SB2SB3; C3,4 = −SΦ1SB1SB2SB3;

C3,5 = CΦ1CB1CB2SB3; C3,6 = −SΦ1CB1CB2SB3;

C3,7 = CΦ1CB1SB2CB3; C3,8 = −SΦ1CB1SB2CB3;

C3,9 = −SB7CB6CB5CB4 − CB7CB6CB5SB4; C3,10 = 0;

C3,11 = SB7SB6SB5CB4 + CB7SB6SB5SB4; C3,12 = 0;

C3,13 = SB7SB6CB5SB4 − CB7SB6CB5CB4; C3,14 = 0;

C3,15 = SB7CB6SB5SB4 − CB7CB6SB5CB4; C3,16 = 0.

Thus, dual equations (15) briefly can be written in the following form:

Ck,1CΨ1 + Ck,2SΨ1 + Ck,3CΨ2 + Ck,4SΨ2 + Ck,5CΨ3 + Ck,6SΨ3 + Ck,7 CΨ4+

Ck,8SΨ4 + Ck,9CΨ5 + Ck,10SΨ5 + Ck,11CΨ6 + Ck,12SΨ6 + Ck,13CΨ7 + Ck,14SΨ7+

Ck,15CΨ8 + Ck,16SΨ8 = 0, k = 1, 2, 3.

(17)

Dividing these equations into the main and moment parts are obtained following six equations

with real numbers. The first three equations repeat these equations, but replacing capital letters

with small letters:

ck,1Cψ1 + ck,2Sψ1 + ck,3Cψ2 + ck,4Sψ2 + ck,5Cψ3 + ck,6Sψ3 + ck,7Cψ4+

+ck,8Sψ4 + ck,9Cψ5 + ck,10Sψ5 + ck,11Cψ6 + ck,12Sψ6 + ck,13Cψ7 + ck,14×
×Sψ7 + ck,15Cψ8 + ck,16Sψ8 = 0, k = 1, 2, 3.

(18)
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In equations (18), the coefficients ck,j , (k = 1, 2, 3; j = 1, 2, ..., 16) are the main parts of the

corresponding coefficients, for example:

c1,1 = Cφ1Cβ1Cβ2Cβ3.

The following three equations are the moment part of equations (18), [the sign “ ◦ ” means

the moment part]:

(c0k,1 + ck,2ψ
0
1)Cψ1 + (c0k,2 − ck,1ψ

0
1)Sψ1 + (c0k,3 + ck,4ψ

0
2)Cψ2 + (c0k,4 − ck,3ψ

0
2)Sψ2+

(c0k,5 + ck,6ψ
0
3)Cψ3 + (c0k,6 − ck,5ψ

0
3)Sψ3 + (c0k,7 + ck,8ψ

0
4)Cψ4 + (c0k,8 − ck,7ψ

0
4)Sψ4+

(c0k,9 + ck,10ψ
0
5)Cψ5 + (c0k,10 − ck,9ψ

0
5)Sψ5 + (c0k,11 + ck,12ψ

0
6)Cψ6 + (c0k,12 − ck,11ψ

0
6)Sψ6+

(c0k,13 + ck,14ψ
0
7)Cψ7 + (c0k,14 − ck,13ψ

0
7)Sψ7+

(c0k,15 + ck,16ψ
0
8)Cψ8 + (c0k,16 − ck,15ψ

0
8)Sψ8 = 0.

(19)

In these equations, the coefficients c0k,j , (k = 1, 2, 3; j = 1, 2, ..., 16) are the moment parts of

the corresponding coefficients, for example:

c01,1 = (C1,1)
0 = (CΦ1CB1CB2CB3)

0 = (CΦ1)
0Cβ1Cβ2Cβ3+

Cφ1(CB1)
0Cβ2Cβ3 + Cφ1Cβ1(CB2)

0Cβ3 + Cφ1Cβ1Cβ2(CB3)
0 =

−φ0
1Sφ1Cβ1Cβ2Cβ3 − Cφ1β

0
1Sβ1Cβ2Cβ3 − Cφ1Cβ1β

0
2Sβ2Cβ3 − Cφ1Cβ1Cβ2β

0
3Sβ3.

ψ0
1, (i = 1, 2, ..., 8) are the moment parts of the intermediate dual angles Ψi and are known

quantities.

We introduce the notation:

Cψ1 = x1;Sψ1 = x2;Cψ2 = x3;Sψ2 = x4;

Cψ3 = x5;Sψ3 = x6;Cψ4 = x7;Sψ4 = x8;

Cψ5 = x9;Sψ5 = x10; Cψ6 = x11; Sψ6 = x12;

Cψ7 = x13;Sψ7 = x14;Cψ8 = x15;Sψ8 = x16.

(20)

With these notations, equations (18) and (19) take the following form:

ck,1x1 + ck,2x2 + ck,3x3 + ck,4x4 + ck,5x5 + ck,6x6 + ck,7x7 + ck,8x8+

ck,9x9 + ck,10x10 + ck,11x11 + ck,12x12 + ck,13x13 + ck,14x14 + ck,15x15 + ck,16x16 = 0,

(c0k,1 + ck,2ψ
0
1)x1 + (c0k,2 − ck,1ψ

0
1)x2 + (c0k,3 + ck,4ψ

0
2)x3 + (c0k,4 − ck,3ψ

0
2)x4+

(0k,5 + ck,6ψ
0
3)x5 + (0k,6 − ck,5ψ

0
3)x6 + (c0k,7 + ck,8ψ

0
4)x7 + (c0k,8 − ck,7ψ

0
4)x8+

(c0k,9 + ck,10ψ
0
5)x9 + (c0k,10 − ck,9ψ

0
5)x10 + (c0k,11 + ck,12ψ

0
6)x11 + (c0k,12 − ck,11ψ

0
6)x12+

(c0k,13 + ck,14ψ
0
7)x13 + (c0k,14 − ck,13ψ

0
7)x14+

(c0k,15 + ck,16ψ
0
8)x15 + (c0k,16 − ck,15ψ

0
8)x16 = 0.

k = 1, 2, 3.

(21)

The following 8 equations reflect the obvious conditions:

x21 + x22 = 1;x23 + x24 = 1;x25 + x26 = 1;x27 + x28 = 1,

x29 + x210 = 1;x211 + x212 = 1;x213 + x214 = 1.x215 + x216 = 1.
(22)

Between intermediate angles, there are the following dependencies:

ψ1 + ψ4 = ψ2 + ψ3, ψ5 + ψ8 = ψ6 + ψ7 or

cos(ψ1 + ψ4) = cos(ψ2 + ψ3), cos(ψ5 + ψ8) = cos(ψ6 + ψ7).



48 TWMS J. PURE APPL. MATH., V.13, N.1, 2022

Having revealed the last expressions, we get:

Sψ1Cψ4 + Cψ1Sψ4 = Sψ2Cψ3 + Cψ2Sψ3, Sψ5Cψ8 + Cψ5Sψ8 = Sψ6Cψ7 + Cψ6Sψ7,

or taking into account expressions (20):

x2x7 + x1x8 = x4x5 + x3x6,

x10x15 + x9x16 = x12x13 + x11x14.
(23)

Thus, to determine the unknowns xk, (k = 1, 2, ..., 16) we have 16 equations - 6 equations

from expression (21), 8 equations from expression (22), and two equations from expression (23).

Having determined the intermediate angles, we easily determine the angles φ2, φ3, φ4, φ5, φ6, φ7.

Thus, as a result of the proposed method, the displacement analysis of the 7R mechanism in

comparison with other methods is described by relatively simple equations and therefore, their

numerical solution is not difficult.

Remark 4.1. The introductions of intermediate angles are also possible if the dual quater-

nions terms leave in one side of the closure equations, as in equation (13). By expanding the

quaternion product (13), and equating the coefficients at orths 1, i1, i2, i3 by the above method,

we also obtain six independent equations. Accordingly, intermediate unknown angles will be as

follows:

Ψk = Φ2 ± Φ3 ± Φ4 ± Φ5 ± Φ6 ± Φ7, k = 1, 2, . . . , 32.

These six equations will be linear with respect to the sine and cosines of the intermediate

angles. Thus, the number of unknowns will reach 64. To determine the unknowns, in addition

to the above six equations, there will be another 58 dependencies - 32 equations like (22) and

26 equations like (23). It is clear that this method is unprofitable from a mathematical point

of view, and therefore quaternions-factors should be uniformly distributed on both sides of the

equation of the condition of closure of the mechanism.

5. A numerical example

As a numerical example, displacement problem of the 7R mechanism with the following design

dimensions was solved:

β′1 = 100, β′2 = 150, β′3 = 150, β′4 = 200, β′5 = 150, β′6 = −150, β′7 = −100,

β01
′
= 3, β02

′
= 4, β03

′
= 5, β04

′
= 2, β05

′
= 2, β06

′
= 3, β07

′
= 3,

φ0
1
′
= 1, φ0

2
′
= 1, φ0

3
′
= 2, φ0

4
′
= 2, φ0

5
′
= 2, φ0

6
′
= 3, φ0

7
′
= 3.

Calculations are made for the discrete input positions of the first link through every 15

degrees of its turn. For each position of the input link, the angles φ2, φ3, φ4, φ5, φ6, φ7 are

calculated. Iterative process produced by the method of Newton-Raphson. The following values

are displayed on the screen: f1-angle of rotation of the input link, it is the quantity of iterations

for the given step, f2, f3, f4, f5, f6, f7 the corresponding angles rotations in the rotational

kinematic pairs. The results of the numerical example showed that, during the rotation of

the input link, the mechanism go over from one assembly to another. As can be seen from

the numerical example, beginning with φ1 = 3450 (indicated in bold letters), the mechanism

is transferred to a stable assembly. Therefore, to obtain a stable assembly, the input link is

informed of two turns.
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Table 2. Results of the numerical solutions.

φ1 it. φ2 φ3 φ4 φ5 φ6 φ7

0 12 229,8604 119,9979 49,9596 163,6792 153,7389 163,6971

15 12 267,3578 156,7464 1,2869 142,5680 137,5505 163,7591

30 5 282,7395 144,4137 1,3539 106,3417 150,7853 172,3097

45 5 280,2083 280,2083 5,8589 93,5090 160,3827 176,1918

60 4 273,7832 98,0836 11,6395 86,4454 168,3609 178,0511

75 4 264,1061 64,1502 20,7367 82,3210 172,4578 177,9998

90 7 217,5709 297,0543 64,2346 112,9116 179,8616 154,8706

105 5 188,8891 237,6696 75,8594 135,2061 205,6596 141,2783

120 4 184,3510 214,3974 78,8672 136,7380 205,9260 140,2375

135 4 182,8586 196,1283 81,0316 135,9858 204,5073 141,4451

150 4 181,9645 180,3209 82,2831 134,8478 203,8835 143,8176

165 4 181,1723 166,4852 82,6935 133,6272 204,3064 146,8744

180 3 180,3906 154,3912 82,5044 132,3906 205,7279 150,2851

195 3 179,6045 143,7799 81,9730 131,1865 208,1048 153,8053

210 3 178,7874 134,3346 81,2926 130,0499 211,3845 157,2599

225 3 177,8822 125,7024 80,5741 128,9798 215,4501 160,5341

240 3 176,7982 117,5104 79,8542 127,9283 220,0882 163,5633

255 3 175,4007 109,3587 79,1066 126,7961 224,9720 166,3217

270 3 173,4783 100,7775 78,2431 125,4164 229,6272 168,8099

285 3 170,6476 91,1180 77,0777 123,4899 233,3113 171,0500

300 3 166,0474 79,2581 75,1476 120,3435 234,5753 173,1062

315 3 157,0457 62,6383 70,7299 113,8314 229,3464 175,2396

330 4 133,5780 35,8906 54,4456 95,6297 203,2686 178,8825

345 5 90,6280 1,7108 19,8272 73,3145 166,3865 184,3940

360 5 68,0151 48,0000 1,0410 86,6697 195,7284 188,5856

375 5 25,1047 96,1466 341,6684 106,6827 216,1925 188,1032

390 5 329,9114 117,6188 341,8062 107,3038 201,6085 183,2379

405 4 300,7327 109,3409 354,5212 96,3334 182,1828 181,7112

420 5 279,1345 93,5333 7,9831 86,8005 165,2766 179,9767

435 5 259,9527 72,2531 24,3111 83,4349 155,5610 176,4309

450 4 243,3743 48,2677 43,4438 89,2298 158,8294 170,8575

465 4 230,7729 26,5980 60,4914 99,6613 170,7876 165,4086

480 4 221,3460 8,6921 72,9136 109,6864 183,7948 161,4961

495 4 213,7265 354,3594 80,8766 117,7033 194,8670 159,0670

510 4 207,0308 343,1485 85,1332 123,4423 203,2716 157,7636

525 4 200,7503 334,4829 86,5194 127,0572 209,0319 157,2714

540 4 194,5913 327,7562 85,8196 128,8326 212,4208 157,3695

555 4 188,3746 322,4159 83,7076 129,0589 213,7564 157,9147

570 4 181,9749 318,0093 80,7277 127,9786 213,3162 158,8161

585 4 175,2812 314,2000 77,3000 125,7687 211,3069 160,0137

600 4 168,1704 310,7775 73,7292 122,5381 207,8562 161,4678

615 4 160,4850 307,6798 70,2044 118,3281 203,0123 163,1572

630 4 152,0140 305,0548 66,7697 113,1042 196,7411 165,0885

645 4 142,4804 303,4033 63,2314 106,7308 188,9223 167,3237

660 4 131,5712 303,9058 58,9272 98,9200 179,3892 170,0373

675 4 119,1135 309,1970 52,2154 89,2323 168,3145 173,6072

690 4 105,5152 325,4377 39,6981 77,9884 158,8277 178,5842

705 5 90,6280 1,7108 19,8272 73,3145 166,3865 184,3940

720 5 68,0151 48,0000 1,0410 86,6697 195,7284 188,5856
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Based on the results of the numerical solution of the 7R mechanism, the graphs of the depen-

dences φk = φk (φ1) , k = 2÷ 7 were constructed (Fig.3). As one would expect, the angle φ2

varies according to a constantly decreasing law, and the remaining angles φ3÷7 vary according

to the periodic law having the maximum and minimum values.

6. Conclusion

We devised a new method for closed-loop equations of mechanisms that is particularly effective

in the preparation of these equations for complex multi-loop spatial mechanisms. The offered

method greatly simplified outline of the closed-loop equations of spatial mechanisms, whereby it

becomes possible to express these equations in an explicit form. The numerical solution of the

spatial 7R mechanism describe the decreasing and periodic laws of output six angles as functions

of one input angle.

Figure 3. The graphs of the dependences φk = φk (φ1) ( k = 2÷ 7).

Highlights.

(1) the displacement analysis of 7R spatial mechanism have been solved by using dual quater-

nion mathematical approach;

(2) in the preparation of closed-loop equations, we introduced intermediate angles;

(3) as a result, it was possible greatly to simplify the closed-loop equations and obtain

algebraic equations of displacement of the 7R mechanism in the final form;

(4) by numerical solution 16 closed-loop equations we determine intermediate angles and

then are calculation the angles of rotation in the kinematic pairs;
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